Abstract
Covalent organic frameworks (COFs) receive much attention in biomedicine because of their unique adsorption, optical and biological properties, as well as highly variable structures. However, preparation of nanosized COFs with uniform and controllable size is still a challenge. Herein, we develop a facile interfacial method to prepare the COF nanoparticles (COFNPs) with the uniform size of 30-50nm from p-benzoquinone (BQ) and 4-[1,2,2-tris(4-aminophenyl)ethenyl]aniline (TPEA) by Michael addition. The TPEA-BQ COFNPs show positive zeta potential and effectively load the hydrophobic anticancer drug camptothecin (CPT) with the capacity of up to 127wt%, and remarkably improved the CPT dispersibility in water due to the retention of quinone structure. In vitro assay reveals CPT@ TPEA-BQ significantly reduced cell viability to 29% after 24h incubation, much lower than that of free CPT (51%) at the same concentration of 10μg mL-1. Further in vivo experiment confirms the high anticancer drug delivery performance of the designed TPEA-BQ COFNPs. After 20days of injection treatment, the CPT loaded in TPEA-BQ COFNPs inhibits the tumor growth by 60%, much higher than that of free CPT group (23%). This work demonstrates the feasibility to design advanced drug delivery systems based on highly structure-tunable COF system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have