Abstract

Effective repair immediately after spinal cord injury can improve the prognosis of the patient. Injection of membrane resealing nanomaterial is one of the most promising technique to repair the membrane. In order to improve the retention rate of membrane repair material at injury site, membrane resealing nanomaterial can be combined with magnetic nanoparticle and magnetic targeting system. In this paper, a special site directed magnetic targeting system, which contain a C-shaped permanent magnet and a ferromagnetic needle, was constructed. Simulation was conducted to analyze the influence of the shape of needle on the magnetic field to provide magnetic force large enough to make the magnetic particles stay at the target site. Results showed that the appearance of ferromagnetic needle raised both the strength and the gradient of magnetic field at the target site. Moreover, with similar apex angles, longer needles with larger diameters can produced lager magnetic field, but smaller needles has better focal area at the small injury site in spinal cord injury. These results provide a basis for design and fabrication of ferromagnetic needles when the targeting system is applied in future experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.