Abstract
Abstract A segmented thermoelectric (TE) generator was designed with higher temperature segments composed of n-type Mg 2 Si and p-type higher manganese silicide (HMS) and lower temperature segments composed of n- and p-type Bi–Te based compounds. Since magnesium and silicon based TE alloys have low densities, they produce a TE module with a high specific power density that is suitable for airborne applications. A two-pair segmented π-shaped TE generator was assembled with low contact resistance materials across bonding interfaces. The peak specific power density of this generator was measured at 42.9 W/kg under a 498 °C temperature difference, which has a good agreement with analytical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.