Abstract

In bone tissue engineering, scaffolds play a vital role in regeneration of tissue. It acts as a template for cell interaction and formation of extracellular matrix to provide structural support to newly formed bone tissues. The scaffold design and manufacturing with additive manufacturing method are still challenging. The parameters of scaffold structure are pore size, pore interconnectivity, porosity, and surface area to volume ratio, strength and stiffness of the material. Among these, porosity is directly influencing stiffness and strength of the structure. Higher porosity can accommodate more number of tissues and interconnected pore allow uniform distribution of cells in the scaffold structure. The objective of this work is to develop scaffold structures with controlled internal architecture using FDM and evaluate the percentage variation in compressive strength and structural modulus of scaffold structures. The internal architecture is controlled by porosity and pore size of scaffold with custom defined tool path of FDM system in pre-processing software. In this work, using the custom defined tool path with minimum slice thickness, the scaffold developed are found with maximum porosity of 82.7% and compressive strength varied from 1.76 MPa to 9.34 MPa and structural modulus of scaffold varied from 52.2 MPa to 212.MPa. These results showed that FDM process is suitable for tissue engineering applications. The material used in this study is ABS, which is biocompatible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call