Abstract

Literature on the design of efficient nonfouling membranes by in-situ modification is poor, which can be explained by the difficulty to control membrane formation mechanisms when a third material is added to the casting solution, or by the lack of stability of matrix polymers with surface-modifiers. We present polyvinylidene fluoride membranes formed by vapor-induced phase separation and modified with a tri-block copolymer of poly(styrene) and poly(ethylene glycol) methacrylate moieties (PEGMA124-b-PS54-b-PEGMA124). After characterizing the copolymer, we move onto membrane formation mechanisms. Membrane formation is well controlled and leads to structure close to bi-continuous. Considering the formulation chosen, PVDF/PEGMA124-b-PS54-b-PEGMA124 solutions are less viscous and more hydrophilic than virgin PVDF solutions. Both effects promote non-solvent transfer, thus decreasing the chances for crystallization. Hydrophilic capability of membranes is increased from about 59mg/cm3 to 650mg/cm3, leading to a severe drop of non-specific protein adsorption, up to 85–90%, also depending on its nature. Biofouling at the micro-scale by modified Escherichia coli and Streptococcus mutans is almost totally inhibited. Finally, biofouling is importantly reduced in dynamic conditions, as measured from the water flux recovery ratio of 69.4%, after 3 water-BSA filtration cycles, much higher than with a commercial hydrophilic PVDF membrane (47.3%). These membranes hold promise as novel materials for water-treatment or blood filtration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.