Abstract

In the design of new materials, those with rare and exceptional compositional and structural features are often highly valued and sought after. On the other hand, materials with common and more accessible modes can often provide richer and unsurpassed compositional and structural variety that makes them a more suitable platform for systematically probing the composition-structure-property correlation. We focus here on one such class of materials, pillar-layered metal-organic frameworks (MOFs), because different pore size and shape as well as functionality can be controlled and adjusted by using pillars with different geometrical and chemical features. Our approach takes advantage of the readily accessible layered Zn-1,2,4-triazolate motif and diverse dicarboxylate ligands with variable length and functional groups, to prepare seven Zn-triazolate-dicarboxylate pillar-layered MOFs. Six different gases (N2, H2, CO2, C2H2, C2H4, and CH4) were used to systematically examine the dependency of gas sorption properties on chemical and geometrical properties of those MOFs as well as their potential applications in gas storage and separation. All of these pillar-layered MOFs show not only remarkable CO2 uptake capacity, but also high CO2 over CH4 and C2 hydrocarbons over CH4 selectivity. An interesting observation is that the BDC ligand (BDC = benzenedicarboxylate) led to a material with the CO2 uptake outperforming all other metal-triazolate-dicarboxylate MOFs, even though most of them are decorated with amino groups, generally believed to be a key factor for high CO2 uptake. Overall, the data show that the exploration of the synergistic effect resulting from combined tuning of functional groups and pore size may be a promising strategy to develop materials with the optimum integration of geometrical and chemical factors for the highest possible gas adsorption capacity and separation performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.