Abstract

In phase shifting interferometry, the fringe contrast is preferred to be at a maximum when there is no phase shift error. In the measurement of highly-reflective surfaces, the signal contrast is relatively low and the measurement would be aborted when the contrast falls below a threshold value. The fringe contrast depends on the design of the phase shifting algorithm. The condition for achieving the fringe contrast maximum is derived as a set of linear equations of the sampling amplitudes. The minimum number of samples necessary for constructing an error-compensating algorithm that is insensitive to the jth harmonic component and to the phase shift error is discussed. As examples, two new algorithms (15-sample and (3N - 2)-sample) were derived that are useful for the measurement for highly-reflective surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.