Abstract

Aerial ropeway is an effective alternative to the conventional modes of land public transport in metropolitan areas and cities. Construction of passenger aerial ropeways in urban environment is a very costly enterprise in terms of engineering and economics, and requires significant financial resources. This article is aimed at the development of the design method of the passenger aerial ropeway, ensuring the reduction in its construction cost. For this purpose, the individual components of the construction cost are considered, and the approximate calculation dependencies are proposed. It is shown that the cost of the aerial ropeway is mainly influenced by the installation step, height of intermediate towers and carrying rope tension. The task of the conditional nonlinear optimization of the given parameters is formulated and solved in the research. This task ensures the minimum cost of the aerial ropeway. The optimization task is done by taking into account possible limitations on the ropeway laying in the severely urbanized environment (the terrain, urban infrastructure arrangement, altitude performance of the urban development, technical characteristics of the carrying rope, etc.). Implementing the solution findings of the given optimization task makes it possible to significantly reduce the construction cost of aerial ropeways in urban environment.

Highlights

  • Aerial ropeways are widely used as continuous transport for organization of passenger and cargo carriage in many countries worldwide [1, 2]

  • It is necessary to take into account 11 types of various structural, strength and operational constraints, which should be imposed on variables during the solution of the optimization problem

  • The proposed mathematical model and optimization problem should be used at the initial stage of designing passenger aerial ropeways to analyze the influence of a substantial number of cost factors, as well as construction and geometric factors on the optimal placement, height and number of intermediate towers and the tension force of the supporting ropes

Read more

Summary

Introduction

Aerial ropeways are widely used as continuous transport for organization of passenger and cargo carriage in many countries worldwide [1, 2]. Passenger aerial ropeways are mostly used for rapid and convenient movement of people to the sports, tourist, ecological and health-improving facilities within nature areas with difficult terrain which are difficult to access [3, 4]. According to the data of the comparative techno-economic study [2, 9,10,11], aerial ropeways are more economically and environmentally beneficial than land transport (road, conveyor and rail), especially in cases when the terrain, high density of the housing and industrial development and various urban planning restrictions impede the development of the ground traffic. The studies in the area were conducted in England, Austria, Germany, Italy, Russia and other countries [1, 2, 5]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.