Abstract
To create effective mobile robot manipulators, a function-oriented element base is proposed. Element base selection is based on the analysis of schematics of mobile robot manipulators. It is substantiated that the effective schematics of manipulators are parallel link mechanisms. A rational structural scheme was adopted as a mechanism having six rods of variable length (hexapod). The schemes of mobile robot manipulators with different numbers and types of combined rod supports are considered. It is proved that the same type of element base in the form of spherical hinges can be used to implement a variety of schemes. Different embodiments of schematics of manipulators designed on the proposed function-oriented element base are considered. The basic requirements for the element base of mobile robot manipulators are defined. It is shown that the requirements are provided by the function-oriented element base on the basis of different hydrostatic or aerostatic hinges.A series of variants of schematics and design solutions of regulated spherical hydrostatic and aerostatic hinges are proposed. The hydrostatic spherical hinge, which includes an accurate ceramic (boron carbide) ball has high precision characteristics. Technological approbation of this schematic is conducted by manufacturing a production prototype.The regulated hydrostatic hinge is equipped with a mechatronic system for determining the spatial position of the sphere. This design solution allows you to adjust the position of the hinge sphere within the diametric clearance.The combined aerostatic-hydrostatic support unit aggregated with manipulator drives is proposed. The unit has a jet system for adjusting the support reactions of the aerostatic-hydrostatic supports of the spherical hinge. Technological testing of the developed device is carried out.In order to increase the efficiency of the proposed element base, special algorithms for controlling the position of the spherical manipulator hinges are developed. The algorithms are based on the mathematical modeling of dynamic processes in hinge devices. The algorithms include the implementation of spatial polyharmonic displacements of the sphere with the purposeful selection of the direction of the resulting displacements, which provides the necessary accuracy and speed of the process of adjusting the position of the manipulator.
Highlights
Parallel link manipulators have a high load capacity at low mass compared with traditional constructions
Improved accuracy of the hinge is realized using a special algorithm for adjusting the sphere position based on the mathematical modeling of the dynamic control processes of the support unit
The developed adjustable hydrostatic support unit provides the perception of a dynamic load of up to 5 kN and the range of adjustment of the sphere position –25...+25 microns in an arbitrary direction
Summary
Parallel link manipulators have a high load capacity at low mass compared with traditional constructions. Such manipulators are effectively used in terrestrial robotic complexes designed to work with hazardous objects because they can significantly improve their mass and dimensional characteristics. The use of devices of this type is constrained by the Applied mechanics lack of an effective element base. Work aimed at creating a function-oriented element base, which will enable the necessary functions of manipulators and improve their characteristics, is a vital issue
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Eastern-European Journal of Enterprise Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.