Abstract

The ion temperature varying during inertial confinement fusion implosions changes the amount of Doppler broadening of the fusion products, creating subtle changes in the fusion neutron pulse as it moves away from the implosion. A diagnostic design to try to measure these subtle effects is introduced-leveraging the fast time resolution of gas Cherenkov detectors along with a multi-puck array that converts a small amount of the neutron pulse into gamma-rays, one can measure multiple snapshots of the neutron pulse at intermediate distances. Precise measurements of the propagating neutron pulse, specifically the variation in the peak location and the skew, could be used to infer time-evolved ion temperature evolved during peak compression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.