Abstract
Many wideband applications, e.g., microwave imaging of the head, require low-frequency (~1–6 GHz) operation using small antennas. Vivaldi antennas are extensively used in multifarious wideband applications; however, the physical dimensions of the antenna become very large for covering low-frequency bands. Hence, the miniaturization of Vivaldi antennas, while maintaining proper matching and radiation characteristics, is essential for these applications. In this work, two miniaturized Vivaldi antennas are proposed, and several miniaturization techniques are presented for reducing the size of the antennas without the need for being immersed into any matching liquid, while maintaining desired performance. The novelty of the designs lies in the use of two half-cut superstrates, which help in achieving low-frequency operation with end-fire radiation. Two prototype antennas are fabricated, and the performances of the antennas are analyzed from both simulation and measurement results. The antennas show an FBW of 45.26% and 95.9% with a gain of ~1.9–5.2 dB and ~1.5–5.5 dB, respectively, while having a radiation efficiency above 80% within the resonant bandwidth. A comparison of the proposed antennas with several other state-of-the-art Vivaldi antennas is included to demonstrate the viability of the proposed antennas in achieving the desired performance with comparatively small dimensions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have