Abstract

A series of mesostructured H3PW12O40–titania materials with two-dimensional hexagonal, three-dimensional cubic, and three-dimensional interconnected sponge-like pore geometries were developed by using a single step nonionic-surfactant-templating strategy combined with evaporation-induced self-assembly (EISA) or hydrothermal treatment technique. The mesostructure, morphology, porosity, optical absorption property as well as composition and structure of as-prepared materials were well-characterized. Subsequently, the materials were successfully applied to the degradation of an aqueous diethyl phthalate (a kind of endocrine disrupting chemical) under the simulated sunlight irradiation at λ>320nm and λ>400nm region, respectively, and special attention was paid to investigate the influences of the structural orderings, pore geometries, H3PW12O40 loadings as well as calcination temperature on the photocatalytic performance of the H3PW12O40–titania materials to the target reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.