Abstract

AbstractIn this work, a low profile ultra-wideband (UWB) antenna is designed and investigated using a novel loop-based wideband artificial magnetic conductor (WB-AMC) for gain enhancement. Initially, a compact loop antenna is designed using stub loading and further optimized for the UWB range by applying curve ground methodology. The average gain of the proposed antenna without WB-AMC is 2.7 dBi. To enhance the gain of the entire UWB range, loop-based WB-AMC in [2 × 2] forms is integrated. WB-AMC is used as a ground plane beneath the antenna. To validate the performance, the UWB antenna and WB-AMC are fabricated and tested. The measured results confirm the entire UWB range. Proposed antenna provides a peak gain of 9.4 dBi and an average gain of 5.8 dBi. Vertical profile reduction of 50% is achieved compared to perfect electric conductor ground. The proposed UWB antenna is a potential candidate for UWB wireless applications due to its attractive features such as low profile, wide bandwidth coverage, omnidirectional pattern, constant high gain, and group delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.