Abstract

In wearable devices, power consumption is a serious issue since wearable devices must maintain the power-on state at any time. In healthcare system, a variety of signal processing operations occupy a large portion of overall workload because it has periodic and heavy computational workloads. In this paper, we propose a low-power System on Chip (SoC) architecture for wearable healthcare devices. In order to reduce power consumption of processor, we design a hardware accelerator that handles signal processing and provides computation offloading. Furthermore, to minimize the area and maximize the performance of the accelerator, we optimize the operation bit-width by analyzing the frequency response. The low-power healthcare SoC was fabricated with 0.11[Formula: see text][Formula: see text]m CMOS process. Finally, we measured the power consumption of our chip and verified the applicability of the digital filter accelerator, which reduces the energy consumption for embedded processor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.