Abstract

Abstract — Digital designs in this era require small size and low power components. Scaling of CMOS technology results into various short and narrow geometry effects. One of those effects is subthreshold current (leakage current) which results into unnecessary power dissipation. CNTFET (Carbon Nanotube FET) is a novel approach to solve the problem of scaling. Leakage current power dissipation is reduced by sleep transistor configuration. Flip Flops are an essential part of digital designs. Reduction of power consumption in a Flip Flop is highly desirable. This paper is intended to accomplish a systematic analysis of low power consumption positive edge triggered D Flip Flop made using CNTFETs and in sleep transistor configuration. The proposed circuit has less power dissipation and can be used efficiently with low power circuitry. This proposed work is then compared with the performance analysis of conventional Complementary Metal Oxide Semiconductor and Carbon Nanotube FET circuit designs. The overall simulation and computation is performed using HSPICE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.