Abstract

In this paper, we present a design of M-channel linear-phase paraunitary filter banks (LPPUFB), with filters of unequal lengths and same center of symmetry, (ULPPUFB) without using non-linear optimization algorithms. ULPPUFB can be viewed as generalized lapped orthogonal transforms (GenLOTs) with variable-length basis functions and are used in block transform-based image coding. ULPPUFB has long basis functions in order to avoid blocking artifacts, whereas it reserves short basis functions for high-frequency signal components like edges, thereby limiting ringing artifacts. The design of ULPPUFB has already been shown and can be expressed completely using a lattice structure. However, when it is used in image coding, the coding gain must be maximization, and then we must use non-linear optimization algorithms. When filter length or channel numbers are increased, non-linear optimization algorithms would necessitate an enormous amount of calculation. In this paper, we design each filter without using non-linear optimization, directly based on the compaction problem and implement ULPPUFB by changing these filters into lattice structures. Then, we show their validity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call