Abstract
The symmetric delay factorization (SDF) was introduced to synthesize linear-phase paraunitary filter banks (LPPUFBs) with uniform order (i.e., filter length equal to NM for arbitrary N) and real-valued coefficients. The SDF presents the advantage of decomposing the polyphase transfer matrix (PTM) into only orthogonal matrices, even at the boundary of finite-duration signals, simplifying significantly the design of time-bounded filter banks (TBFBs) or of time-varying filter banks (TVFBs). However, the symmetric delay factorization applies only to LPPUFBs. On the other hand, lattice structures, as well as finite-size lattice structures, are proposed for classes of nonlinear-phase paraunitary filter banks, as the modulated lapped transform (MLT) and the extended tapped transform (ELT). This paper describes a new minimal and complete symmetric delay factorization valid for a larger class of paraunitary filter banks, encompassing paraunitary cosine modulated filter banks, with nonlinear phase basis functions, as well as for a set of LPPUFBs including the linear-phase lapped orthogonal transforms (LOTs) and the generalized tapped orthogonal transforms (GenLOTs). The derivations for filter banks with even and odd numbers of channels are formulated in a unified form. This approach opens new perspectives in the design of time-varying filter banks used for image and video compression, especially in the framework of region or object-based coding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.