Abstract
The output displacement of the traditional symmetrical microgripper is large, but its micro-components or parts are easily damaged due to the uneven force exerted on the left and right jaws of the gripper. The output force of the traditional asymmetric microgripper is stable. However, its output displacement is small, typically half the output displacement of the symmetric microgripper. To solve these problems, in this study, we designed a large-displacement asymmetric microgripper. First, we calculated the relationship between the theoretical input and output variables based on their geometric relationship. Then, we analyzed the performance of the microgripper using finite element software. Lastly, we used a piezoelectric actuator as the input driver of the microgripper. The errors associated with the theoretical and simulated output displacements were 7.05% and 9.24%, respectively. At 150 V of driving voltage, the maximum output displacement was 224 µm, and the actual magnification was 11.2 times. Microparts can be gripped in parallel and stably, which confirms the validity of the design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.