Abstract
The use of synchronous optical modulators is effective in reducing the pulse timing jitter in long-distance soliton transmission. The inherently polarization-insensitive characteristics of the Fabry-Perot multiple quantum-well (MQW) electroabsorption modulator make it a potentially suitable device for this application. We investigate the intensity and phase modulation characteristics of symmetric and asymmetric Fabry-Perot modulators, and show that, by positioning the resonant wavelength <30 nm away from the exciton absorption peak to obtain negative chirp operation, both configurations can be used to successfully reduce timing jitter in a 20 Gb/s soliton system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have