Abstract

There are many problems for traditional reactive power compensation devices to be applied in the grid, such as discontinuous adjustment, small capacity, complex control and harmonics. This paper aims to study a high temperature superconducting magnetically controlled saturable reactor (HTS MCSR), which has a wide range of stepless adjustment. It has a good application prospect in large scale reactive power compensation devices. Based on research of theory and core structure, a shaped-cylinder core is proposed. By means of calculation of saturable reactor and analysis of algebraic and magnetic circuit model, design of 220V HTS MCSR is finished. Results of normal conductive reactor prototype and simulations verify that the range of inductance adjustment is very wide. Furthermore, conceptual design of 35kV HTS MCSR confirms its reactive power capacity is so large, therefore, it is suitable for high voltage power system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call