Abstract
The core of every microprocessor and digital signal processor is its data path. The heart of data-path and addressing units in turn are arithmetic units which include adders. Parallel-prefix adders offer a highly efficient solution to the binary addition problem and are well suited for VLSI implementations. This paper involves the design and comparison of high-speed, parallel-prefix adders such as Kogge-Stone, Brent-Kung, Sklansky, and Kogge-Stone Ling adders. It is found that Kogge-Stone Ling adder performs much efficiently when compared to the other adders. Here, Kogge-Stone Ling adders and ripple adders are incorporated as a part of a lattice filter in order to prove their functionalities. It is seen that the operating frequency of lattice filter increases if parallel prefix Kogge-Stone Ling adder is used instead of ripple adders since the combinational delay of Kogge-Stone Ling adder is less. Further, design and comparison of different tree adder structures are performed using both CMOS logic and transmission gate logic. Using these adders, unsigned and signed comparators are designed as an application example and compared with their performance parameters such as area, delay, and power consumed. The design and simulations are done using 65 nm CMOS design library.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.