Abstract
Covalent organic framework (COF) aerogels with functional groups offer exceptional processability and functionality for various applications. These hierarchical porous materials combine the advantages of COFs with the benefits of aerogels, overcoming the limitations of conventional insoluble and nonfusible COF powders. However, achieving both high crystallinity and shape retention remains a challenge for functionalized COF aerogels. In this work, we develop a novel and general solvent substitution method for the one-step synthesis of formyl-functionalized COF aerogels without harsh vacuum conditions. These aerogels exhibit excellent processing capabilities, superior mechanical strength, and enhanced functionality. As a proof-of-concept, they were used in adsorption and lithium metal battery applications, significantly maximizing the structural advantages of COFs, e.g.: (i) the hierarchical porous structure is fully wetted by the electrolyte to form continuous transport channels; (ii) the polar groups, which are easier to be acquired, help in desolvation and transfer of Li+; (iii) the regular pore structures stabilize deposition of Li+ and inhibit the growth of lithium dendrites. These combined benefits contribute to a lighter battery with improved energy density and enhanced safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.