Abstract
Epilepsy is a highly prevalent neurological disease and valproic acid (VPA) is used as a first-line chronic treatment. However, this drug has poor oral bioavailability, which requires the administration of high doses, resulting in adverse effects. Alternative routes of VPA administration have therefore been investigated, such as the nose-to-brain route, which allows the drug to be transported directly from the nasal cavity to the brain. Here, the use of nanostructured lipid carriers (NLC) to encapsulate drugs administered in the nasal cavity has proved advantageous. The aim of this work was to optimise a mucoadhesive formulation of VPA-loaded NLC for intranasal administration to improve the treatment of epilepsy. The Design of Experiment (DoE) was used to optimise the formulation, starting with component optimisation using Mixture Design (MD), followed by optimisation of the manufacturing process parameters using Central Composite Design (CCD).The optimised VPA-loaded NLC had a particle size of 76.1 ± 2.8 nm, a polydispersity index of 0.190 ± 0.027, a zeta potential of 28.1 ± 2.0 mV and an encapsulation efficiency of 85.4 ± 0.8%. The in vitro release study showed VPA release from the NLC of 50 % after 6 h and 100 % after 24 h. The in vitro biocompatibility experiments in various cell lines have shown that the optimised VPA-loaded NLC formulation is safe up to 75 µg/mL, in neuronal (SH-SY5Y), nasal (RPMI 2650) and hepatic (HepG2) cells. Finally, the interaction of the optimised VPA-loaded NLC formulation with nasal mucus was investigated and mucoadhesive properties were observed. The results of this study suggest that the use of intranasal VPA-loaded NLC may be a promising alternative to promote VPA targeting to the brain, thereby improving bioavailability and minimising adverse effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have