Abstract

A simple and efficient high-performance thin-layer chromatographic method was developed for chiral separation of rac-bupropion (BUP) and its active metabolite rac-hydroxybupropion (HBUP). Design of experiment (DoE)-based optimization was adopted instead of a conventional trial-and-error approach. The Box-Behnken design surface response model was used and the operating variables were optimized based on 17 trials design. The optimized method involved impregnation of chiral reagent, L(+)-tartaric acid, in the stationary phase with simultaneous addition in the mobile phase, which consisted of acetonitrile : methanol : dichloromethane : 0.50% L-tartaric acid (6.75:1.0:1.0:0.25, v/v/v/v). Under the optimized conditions, the resolution factor between the enantiomers of BUP and HBUP was 6.30 and 9.26, respectively. The limit of detection and limit of quantitation for (R)-BUP, (S)-BUP, (R,R)-HBUP, and (S,S)-HBUP were 9.23 and 30.78ng spot-1 , 10.32 and 34.40ng spot-1 , 12.19 and 40.65ng spot-1 , and 14.26 and 47.53ng spot-1 , respectively. The interaction of L-tartaric acid with analytes and their retention behavior was thermodynamically investigated using van't Hoff's plots. The developed method was validated as per the International Conference on Harmonization guidelines. Finally, the method was successfully applied to resolve and quantify the enantiomeric content from marketed tablets as well as spiked plasma samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.