Abstract
In the present study, a design of experiment (DoE) approach was used to optimize chromatographic conditions for the development of a high-performance thin-layer chromatography (HPTLC) method for the simultaneous estimation of metformin hydrochloride (MET) and ursodeoxycholic acid (URSO) in pharmaceutical dosage form. The critical factors were identified using a Taguchi design, and after identification of critical factors, optimization was done using Box–Behnken design (BBD). BBD was used to optimize the compositional parameters and to evaluate the main effect, interaction effects, and quadratic effects of the mobile phase compositions, development distance, and saturation time on the retardation factor (RF) of both drugs. HPTLC separation was performed on aluminum plates pre-coated with silica gel 60 F254 as the stationary phase, using toluene-ethanol-acetone-formic acid (4.5:2:2.5:0.85, V/V) as the mobile phase at a wavelength of 234 nm and 700 nm for MET and URSO, respectively. A sharp and well-resolved peak was obtained for MET and URSO at RF values of 0.19 and 0.80 min, respectively. The calibration curve was in the range of 5000–40000 ng per spot and 1500–12000 ng per spot for MET and URSO, with r2 = 0.984 and r2 = 0.980, respectively. The method was validated for linearity, accuracy, precision, limit of detection, limit of quantification, and specificity. To provide a better visualization of the statistically significant factors derived from the statistical analysis, the perturbation plot and response surface plot for the effect of independent variables on the RF of MET and URSO were evaluated. Stability study was performed under different stress conditions such as acid and alkali hydrolysis, oxidation, and temperature. The developed method was able to resolve drugs and their degradation products formed under the afore-mentioned conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JPC - Journal of Planar Chromatography - Modern TLC
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.