Abstract

The electrical distribution system is facing undesirable power quality disturbances due to different types of linear/nonlinear loads on the supply system. The objective of the project is to reduce the distortion level in voltage or current input to the load and at the output of the filter. To design a simple but highly viable hybrid active power buffer that is capable of feeding less distorted voltage to the nonlinear load model. To present an optimal controlling of these buffers so as to minimize the voltage distortion by designing a different algorithm for the same. Comparing the THD levels of the output voltage waveform with the standard controlling method with the proposed control design to further enhance the proposed design such that it is practically feasible to be implemented in grid system having renewable energy resources. In this work, a power filter has been designed using different algorithms with an objective to reduce the Total Harmonic Distortion in the voltage output waveforms. The total harmonic distortion in the voltage output waveform being fed to the load using only the PQ_RLS algorithm is found to be 2.18 %. In the case of the output voltage from the power buffer using PQ_RLS algorithm, the THD level is 0.17 %. The distortion level in the output voltage waveforms in both the cases being fed to the load when compared, it is found that RLS algorithm in combination with PQ algorithm is more effective in reducing the distortion as compared to standard RLS method or PQ method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.