Abstract

An optical fiber with nano-electromechanical functionality is presented. The fiber exhibits a suspended dual-core structure that allows for control of the optical properties via nanometer-range mechanical movements. We investigate electrostatic actuation achieved by applying a voltage to specially designed electrodes integrated in the cladding. Numerical and analytical calculations are preformed to optimize the fiber and electrode design. Based on this geometry an all-fiber optical switch is investigated; we find that optical switching of light between the two cores can be achieved in a 10 cm fiber with an operating voltage of 35 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.