Abstract
This paper investigates shifting the fundamental frequency of plate structures by corrugation. Creating corrugations significantly improves the flexural rigidities of plate and hence increases its natural frequencies. Two types of corrugations are investigated: sinusoidal and trapezoidal corrugations. The finite element method (FEM) is used to model the corrugated plates and extract the natural frequencies and mode shapes. The effects of corrugation geometrical parameters on simply supported plate fundamental frequency are studied. To reduce the computation time, the corrugated plates are modeled as orthotropic flat plates with equivalent rigidities. To demonstrate the validity of modeling the corrugated plates as orthotropic flat plates in studying the free vibration characteristics, a comparison between the results of finite element model and equivalent orthotropic models is made. A correspondence between the results of orthotropic models and the FE models is observed. The optimal designs of sinusoidal and trapezoidal corrugated plates are obtained based on a genetic algorithm. The optimization results show that plate corrugations can efficiently maximize plate fundamental frequency. It is found that the trapezoidal corrugation can more efficiently enhance the fundamental frequency of simply supported plate than the sinusoidal corrugation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.