Abstract

The current study is focused on understanding the pull-through behaviour of Z-Shaped Cold-Formed Steel (CFS) purlin-to-rafter connection. A total of forty tests were conducted using small-scale testing methods to investigate the influence of parameters such as thickness, depth, and flange width of the purlin section along with the size of the screw head diameter. The results indicated that the test specimens exhibited two modes of pull-through failure (i) rupture-type failure and (ii) bearing-type failure. A transition from rupture-type to bearing-type was observed with an increase in thickness from 1 mm to 3 mm. Both the failure modes were accompanied by tilting of the screw due to eccentricity in the applied load for Z-Shaped purlins. A full-field measurement approach called Three-Dimensional Digital Image Correlation (3D-DIC) technique was employed to better understand the failure mechanism. The DIC strain contours adequately captured the tilting of the screw that can be attributed to the increased strain and out-of-plane deformation at the vicinity of the screw head. A comparison of the test with existing design standards indicates that the design guidelines are unconservative for Z-shaped purlin sections. A modified design equation is proposed to determine the pull-through capacity of Z-shaped purlin-to-rafter connection. Further, reliability study was carried out to determine the resistance and safety factors for the preliminary design equations proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call