Abstract

There is an immense necessity of several kilo bytes of embedded memory for Biomedical systems which typically operate in the sub-threshold domain with perfect efficiency. SRAMs (Static Random Access Memory) dominates the total power consumption and the overall silicon area, as 70% of the die has been occupied by them. This brief proposes the design of a Transmission gate-based SRAM cell for Bio medical application eliminating the use of peripheral circuitry during the read operation. It commences the read operation directly with the help of Transmission gates with which the data stored in the storage nodes can be read, instead of using the precharge and sense amplifier circuits which suits better for the implantable devices. This topology offers smaller area, reduced delay, low power consumption as well as improved data stabilization in the read operation. The cell is implemented in 45nm CMOS technology operated at 0.45V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.