Abstract
Complementary metal oxide semiconductor (CMOS) devices are expected to face new challenges such as exponential current leakage, DIBL, hot carrier effects, and etc. at nano scale. Hence the CMOS technology is being supplanted by the nanotechnologies. Quantum-dot Cellular Automata (QCA) is key technology at nano scale which operates at tera hertz of speed. Comparing with the traditional CMOS technology, the QCA technology has low power consumption and high density. This technology also has a unique methodology such as “processing in wire” and “memory-in-motion”. This work confers an area proficient, high speed full adder (FA) design with efficient clocking. The proposed full adder design comprises of 26 Quantum cells with delay of two clock phases, area occupancy of 0.03 µm 2 . This paper utilizes the unique characteristics of QCA and the proposed Wallace tree multiplier is implemented with the mentioned FA and is designed by using QCA Designer 2.0.3 tool.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.