Abstract

Storing municipal solid waste (MSW) in landfills is the oldest and still the primary waste management strategy in many countries. Russia is the third largest methane (CH4) emitter country after USA and China, representing 5% of total global CH4 emissions from waste landfilling. Due to high economical growth, the amount of waste generated in Russia has risen sharply over the last ten years. However, waste management in Russia is mainly based on landfilling. In order to design an optimal MSW utilization system considering various aspects related to sustainable MSW management, a linear programming model was introduced for this research. The performance of the proposed MSW utilization system in the target area has been evaluated in light of energy, economic, and environmental (3Es) aspects, such as system net cost, annual energy generated from the waste, and the carbon dioxide (CO2) emissions of the system. St. Petersburg city was considered as the target area for the present analysis. The results show that the introduction of the proposed MSW system with energy recovery from waste along with a high level of material recovery has energy, environmental and economic benefits compared to the conventional treatment system. This paper emphasizes the importance of introducing waste treatment methods as an alternative to landfilling, and to improve recycling activities in Russia.

Highlights

  • Generation of municipal solid wastes (MSWs) is closely linked to the population growth process, the urbanization rate, change of lifestyle, and an increase in household income [1]

  • This study considered the sustainability of municipal solid waste management system (MSWMS) through energy, economic and environment components, namely the 3E’s [33,34]

  • This study presents a MSW utilization system considering a set of representative waste treatment technologies widely applied in many countries

Read more

Summary

Introduction

Generation of municipal solid wastes (MSWs) is closely linked to the population growth process, the urbanization rate, change of lifestyle, and an increase in household income [1]. Storing MSW in landfills is the oldest and still the primary waste management strategy in many countries. Landfills generate methane (CH4) in combination with other landfill gases (LFGs) through the natural process of bacterial decomposition of organic waste under anaerobic conditions. Given that CH4 is about 21 times a more powerful greenhouse gas (GHG) than carbon dioxide (CO2), emissions of LFGs are an important source of GHGs. Worldwide CH4 emitted from landfilling of MSW accounted for nearly 750 million tons of carbon dioxide equivalent (CO2-eq )in 2006, and represented over 12% of total CH4 emissions [1,2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.