Abstract

A parallel-serial-combined search scheme, which performs a multi-bit-by-multi-bit parallel-serial search for a single search, is proposed for a magnetic tunnel junction (MTJ)-based high-density and energy-efficient nonvolatile ternary content-addressable memory (TCAM). A two transistor and two MTJ device (2T-2MTJ)-based TCAM cell circuit can be utilized for a bit-parallel search operation up to 4bits under random variations of MOS and MTJ device characteristics by amplifying the multi-bit cell-array resistance difference owing to the source-degeneration cell structure in combination with the cascode structure of the pre-amplification stage in the word circuit. In the proposed parallel-serial-combined search scheme, the bit length of a parallel operation in a single cycle and the search cycle count are optimized, so that the cell activity is minimized by tuning the trade-off between power consumption and search speed. When the proposed nonvolatile TCAM performs a variable-bit parallel-serial-combined search, the cell activity of the proposed nonvolatile TCAM is reduced to 60% of that of a conventional bit-parallel nonvolatile TCAM with a three-level segmentation scheme, which indicates higher density and higher energy efficiency with acceptable search speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.