Abstract
This paper discusses the development of the control system of a mini quadrotor in Konkuk University for indoor applications. The attitude control system consists of a stability augmentation system, which acts as the inner loop control, and a modern control approach based on modeling will be implemented as the outer loop. The inner loop control was experimentally satisfied by a proportional-derivative controller; this was used to support the flight test in order to validate the modeling. This paper introduces the mathematical model for the simulation and design of the optimal control on the outer loop control. To perform the experimental tests, basic electronic hardware was developed using simple configurations; a microcontroller used as the embedded controller, a low-cost 100 Hz inertial sensors used for the inertial sensing, infra-red sensors were employed for horizontal ranging, an ultrasonic sensor was used for ground ranging and a high performance propeller system built on an quadrotor airframe was also employed. The results acquired from this compilation of hardware produced an automatic hovering ability of the system with ground control system support for the monitoring and fail-safe system.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have