Abstract
A length-matched micro Fabry-Perot (FP) interferometer is proposed for strain measurement under irradiation environment. Theoretical simulation shows that a well length-matched FP sensor can achieve a very low drift of the cavity length and strain sensitivity in irradiation environment. In experiment, such an FP cavity is realized by laser micromachining. It shows a low cavity length drift of −0.037 µm and a strain sensitivity deviation of 0.52%, respectively, under gamma irradiation. Meanwhile, the intensity of interference fringes is also stable. As a result, such a length-matched FP cavity is a very promising candidate for strain sensing in radiative environments.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have