Abstract
One kind of neurological disorder is caused in the brain which is defined as Autism Spectrum Disorder (ASD). It has acquired the symptoms that appear in young children. In addition to that, it influences how the individual behaves and learns as well as communicates and interacts with others. More specifically, the term Autism is defined as a developmental disorder that impacts communication and social skills and it may vary from mental handicap cases to relieving superior cognitive abilities, intact, and the characteristic pattern of poor. Moreover, the school activities have acquired various difficulties to the given model that include changes in expected routines, intense sensory stimulation, noisy or disordered environments, and social interactions. Consequently, the conventional approaches face certain limitations like user privacy, scalability, and cold-start. Here, a novel suggestion system for autistic children is developed to detect distractions and anxious situations using deep learning and then treat the children based on their abilities. It has helped to prevent the risk to children. The data is given to the selection of the feature stage. The weight optimization is performed using the Modified Garter Snake Optimization Algorithm (MGSOA) during the selection of features. Then, the selected features are given to the Adaptive Dilated One Dimensional Conventional Neural Network (1DCNN) and Long Short-Term Memory (LSTM) with Attention Mechanism termed AD-1DCNN + LSTM-AMfor detecting the autism disorder for children. Here, the parameter optimization is performed using MGSOA optimization. It effectively forecasts the symptoms in a short time. This optimization helps to provide reliable and flexible outcomes for the developed recommendation system for autistic children. The developed recommendation system for autistic children is compared to baseline techniques with efficacy metrics to visualize elevated results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.