Abstract

Increasing number of CNG vehicles on road emits considerable amount of CO, a poisonous gas and CH4, a greenhouse‐gas. Highly active and oxygen‐deficient NiCo2O4‐δ spinel and its individual metal‐oxides were synthesized by calcination of precipitated/co‐precipitated basic‐carbonates followed by calcination under different strategies of stagnant air(s), flowing air(f) and reactive calcination(RC) for total oxidation of CO‐CH4 mixture. The catalysts were characterized by XRD, XPS, BET surface‐area, SEM‐EDX and TEM. The performance order of the catalysts for the oxidation of CO‐CH4 mixture was as follows: NiCoRC>NiCof>NiCos>CoRC>Cof>Cos>NiRC> Nif>Nis. The pairing of Ni and Co in spinel‐structure together with RC produced catalyst was oxygen‐deficient highly active for total oxidation of the mixture at the lowest temperature of 350°C. The NiCoRC was found stable under reaction‐conditions for 50h at 350°C and after four successive heating (350°C)‐cooling (35°C) cycles besides accelerated‐aging tests up to 600°C. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2632–2646, 2018

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.