Abstract
The existing functional electrical stimulation (FES) techniques often required to solve the complex "inverse dynamic problem" to calculate the muscle torques for moving along a desired trajectory. According to the threshold control theory of voluntary motor control, a bio-mimetic threshold control strategy for the FES controller is designed and tested in the human arm movement. The arm is modeled as three segments connected by two hinges joints. The movement is driven by seven muscles and limited in the horizontal plane. All muscles are described by a modified Hill-type muscle model. Simulation results suggest that the threshold FES control system can realize point to point movement and can approximately follow the desired traces in presence of feedback delays up to 20 ms. The movement can also maintain stability under external perturbation or external load. The control system can be employed in clinical application because of the following advantages: (1) The control strategy includes some mature control techniques which had been realized in hardware. (2) Only sophisticated sensors of goniometer and the surface electrodes are needed to provide feedbacks and muscle stimulation. (3) The performance of the control system will not be critically influenced by the slight change of musculo-tendon parameters and feedback delays, and even the parameters of controller are fixed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have