Abstract

In this paper, a small-displacement sensing system based on the surface plasmon resonance technology in heterodyne interferometry is proposed. The basic sensing unit is composed of a prism assembly and a displacement probe. The prism assembly is composed of a halfwave (λ/2) plate, two right-angle prisms and two rotation stages. In a prism assembly, two right-angle prisms are coated with 2Ti film and 45.5nm Au film. Thus, the surface plasmons are excited when a equals to a resonant angle α sp , α sp ≈43.813°. In order to achieve the best resolution of the system, both of the initial incident angles are equal to 43.813° on the hypotenuse surfaces of two prisms. The small-displacement sensor is with high sensitivity and resolution due to the attenuated total reflection effect in heterodyne interferometry. Besides, we can obtain the results of the experiment in a distant place by using a ZigBee/Wi-Fi module. It can be found that the displacement resolution of the small-displacement sensor can reach 0.3nm at least by numerical simulation. The small-displacement sensor has some merits, e.g., easy operation, high measurement accuracy, high resolution and rapid measurement, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.