Abstract

A straight short-beam linear piezoelectric motor constructed with two sets of ceramic actuators separated with the 1/4 wavelength interval is designed in this article. The piezoelectric ceramic actuators are fabricated in the whole body, which is driven by a two-phase circuit with the same amplitude but a phase difference of π /4. Traveling wave (TW) is formed by superimposing standing waves generated by each set of ceramic actuators. At the ends of the short beam, a wave-reduction mechanism with larger cross-sectional area is designed so that wave reflection is effectively diminished to preserve the TW. The currently developed short-beam linear piezoelectric motor is estimated, which can produce an ideal output speed of 169 mm/s while applying voltage of Vpp = 300 V at 45.49 kHz. Instead of operating as a stator to drive a carriage for example, the short-beam linear piezoelectric motor is implemented on a guide slider, and therefore, a linear piezoelectric motor stage is built. While driving the linear stage employed with a preload 300 GW and a friction coefficient of about 0.15, the propulsion force is measured about 4.8 N, the speed is about 56 mm/s, and the position resolution can achieve in the submicrometer scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call