Abstract

This paper presents a simple and effective design of a discrete-time repetitive control (RC) in frequency domain. Unlike existing phase lead RC designs, the proposed approach provides flexible phase lag compensation at multiple frequencies, which ensures improved tracking performance and robustness against system uncertainties over a wide bandwidth. The proposed design is applied to a linear actuator (LA) with friction and payload variations. The robust stability analysis presented in this study demonstrates the effectiveness of the proposed method in the presence of multiple system uncertainties. Both simulation and experimental results validate the improvement. While, the comparison study shows the superiority of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.