Abstract

This paper presents a novel microgripper mechanism for micromanipulation and assembly. The microgripper is driven by a piezoelectric actuator, and a three-stage flexure-based amplification has been designed to achieve large jaw displacements. The kinematic, static and dynamic models of the microgripper have been established and optimized considering the crucial parameters that determine the characteristics of the microgripper. Finite element analysis was conducted to evaluate the characteristics of the microgripper, and wire electro discharge machining technique was utilized to fabricate the monolithic structure of the microgripper mechanism. Experimental tests were carried out to investigate the performance of the microgripper and the results show that the microgripper can grasp microobjects with the maximum jaw motion stroke of 190 μm corresponding to the 100-V applied voltage. It has an amplification ratio of 22.8 and working mode frequency of 953 Hz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.