Abstract
In recent years, optical neural networks have attracted widespread attention, due to their advantages of high speed, high parallelism, high bandwidth, and low power consumption. Photonic unitary neural network is a kind of neural networks that utilize the principles of unitary matrices and photonics to perform computations. In this paper, we design a photonic unitary neural network based on Mach–Zehnder interferometer arrays. The results show that the network has a good performance on both triangular and circular binary classification datasets, where most of the data points are correctly classified. The accuracies achieve 97% and 95% for triangular and circular datasets, with the loss function values of 0.023 and 0.046, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.