Abstract

Artificial neural networks have dramatically improved the performance of many machine-learning applications such as image recognition and natural language processing. However, the electronic hardware implementations of the above-mentioned tasks are facing performance ceiling because Moore’s Law is slowing down. In this article, we propose an optical neural network architecture based on optical scattering units to implement deep learning tasks with fast speed, low power consumption and small footprint. The optical scattering units allow light to scatter back and forward within a small region and can be optimized through an inverse design method. The optical scattering units can implement high-precision stochastic matrix multiplication with mean squared error <10-4 and a mere 4 × 4 μm2 footprint. Furthermore, an optical neural network framework based on optical scattering units is constructed by introducing “Kernel Matrix”, which can achieve 97.1% accuracy on the classic image classification dataset MNIST.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call