Abstract

Background Heart failure (HF) remains a major cause of morbidity and mortality in North America. With an aging population and an unmet clinical need by current pharmacologic and device-related therapeutic strategies, novel treatment options for HF are being explored. One such promising strategy is gene therapy to target underlying molecular anomalies in the dysfunctional cardiomyocyte. Prior animal and human studies have documented decreased expression of SERCA2a, a major cardiac calcium cycling protein, as a major defect found in HF. Methods and Results We hypothesize that increasing the activity of SERCA2a in patients with moderate to severe HF will improve their cardiac function, disease status, and quality of life. Gene transfer of SERCA2a will be performed via an adeno-associated viral (AAV) vector, derived from a nonpathogenic virus with long-term transgene expression as well as a clinically established favorable safety profile. Conclusions We describe the design of a phase 1 clinical trial of antegrade epicardial coronary artery infusion (AECAI) administration of AAVI/SERCA2a (MYDICAR) to subjects with HF divided into 2 stages: in Stage 1, subjects will be assigned open-label MYDICAR in one of up to 4 sequential dose escalation cohorts; in Stage 2, subjects will be randomized in parallel to 2 or 3 doses of MYDICAR or placebo in a double-blinded manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.