Abstract

The assessment of the concentration and distribution of l6N, derived from 16O in the cooling water exposed to neutron irradiation, is essential for ensuring radiation safety during nuclear reactor operation. The imaging method allows for the visualization of the intensity distribution of these l6N by capturing gamma-rays emitted during their decay process. However, the existing gamma camera is exclusively compatible with gamma-rays below 2MeV. In this paper, a novel gamma camera featuring a thick double-conical penumbra aperture, a pixelated Lu1.8Y0.2SiO5:Ce scintillator array, and a position-sensitive photomultiplier tube is proposed to address this limitation. This innovative design offers a large field of view (FOV) and is suitable for high energy extended gamma source imaging. The optimization of key parameters of the camera was conducted, and a FOV of 60° and an angular resolution of up to 4.57° were achieved. Imaging simulations, including a simplified model of the primary loop of the pressurized-water reactor by GEANT4 code and image reconstruction using the expectation maximum algorithm, demonstrated that the proposed gamma camera could obtain a satisfactory spatial resolution for diagnosing the distribution of 16N in the primary loop of a nuclear reactor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call