Abstract

Decades of measurements of the thermophysical properties of hot metals show that pulsed Joule heating is an effective method to heat solid and liquid metals that are chemically reactive or difficult to contain. To extend such measurements to hundreds of GPa pressure, pulsed heating methods have recently been integrated with diamond anvil cells. The recent design used a low-side switch and active electrical sensing equipment that was prone to damage and measurement error. Here, we report the design and characterization of new electronics that use a high-side switch and robust, passive electrical sensing equipment. The new pulse amplifier can heat ∼5 to 50 μm diameter metal wires to thousands of kelvin at tens to hundreds of GPa using diamond anvil cells. Pulse durations and peak currents can each be varied over three orders of magnitude, from 5 µs to 10ms and from 0.2 to 200A. The pulse amplifier is integrated with a current probe. Two voltage probes attached to the body of a diamond anvil cell are used to measure voltage in a four-point probe geometry. The accuracy of four-point probe resistance measurements for a dummy sample with 0.1 Ω resistance is typically better than 5% at all times from 2 µs to 10ms after the beginning of the pulse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.