Abstract
A non-intrusive electrical impedance-based sensor is developed for measurement of local void fraction in air–water adiabatic flow through rectangular microchannels. Measurement of the void fraction in microchannels is essential for the formulation of two-phase flow heat transfer and pressure drop correlations, and may enable real-time flow regime control and performance prediction in the thermal regulation of high-heat-flux devices. The impedance response of the sensor to a range of flow regimes is investigated for a configuration with two aligned electrodes flush-mounted on opposing microchannel walls. Numerical simulations performed on a multi-phase domain constructed from three-dimensional reconstruction of experimentally observed phase boundaries along with the corresponding experimental results serve to establish the relationship between void fraction and dimensionless impedance for this geometric configuration. A reduced-order analytical model developed based on an assumption of stratified gas–liquid flow allows ready extension of these calibration results to different working fluids of interest.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have