Abstract

A conceptual approach was used to design a new Ni-free austenitic stainless steel with a unique combination of ultrahigh strength and ductility. The concept was based on the alloying of the 0.05C–18Cr–12Mn (wt.%) steel by 0.39%N and heavy warm rolling (84% reduction) at 1173K (900°C) to achieve the yield strength of minimum 1GPa and high tensile strength and elongation due to a proper stability of the austenite as a result of the optimized stacking fault energy (SFE). The yield strength of 1010MPa, tensile strength of 1150MPa and high fracture strain of 70% were measured for the steel designed. Dislocation and solid solution hardening mechanisms are introduced as the main contributors for the ultrahigh yield strength of the steel. The strain hardening is gradual and the hardening rate reaches a high level of ∼2400MPa at a high true strain of 40% due to slow α′-martensitic transformation and mechanical twinning. Consequently, the ductility of the designed steel is excellent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.