Abstract
Titanium alloys typically exhibit a limited ductility (typically 20%) and little strain-hardening. An alloy design with new concept was conducted aiming at improving both ductility and strain hardening while keeping the mechanical resistance at an excellent level. An experimental validation was illustrated with the Ti-12(wt.%)Mo alloy, exhibiting true stress - true strain values at necking, of about 1000MPa and 0.38, respectively, with a large strain hardening rate close to the theoretical limit. In order to clarify the origin of this outstanding combination of mechanical properties, detailed microstructural investigation and phase evolution analysis were conducted by means of in-situ synchrotron XRD, in-situ light microscopy, EBSD mapping and TEM microstructural analysis. In the deformed material, combined Twinning Induced Plasticity (TWIP) and Transformation Induced Plasticity (TRIP) effects are observed. Primary strain/stress induced phase transformations (β->ω and β->α’’) and primary mechanical twinning ({332}<113> and {112}<111>) are simultaneously activated in the β matrix. Secondary martensitic phase transformation and secondary mechanical twinning are then triggered in the twinned β zones. The {332}<113> twinning and the subsequent secondary mechanisms are shown to be dominant at the early stage deformation process. The evolution of the deformation microstructure results in a high strain hardening rate (~2GPa) bringing both a high tensile strength and a large uniform elongation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.